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Abstract—  Ransomwares are notorious threats that have 
become rampant in the cyber world, the peculiarity about 
them is that they encrypt user’s critical data using strong 
encryption algorithms. The encrypted data can only be 
recovered by paying a ransom in bitcoins to the attacker. A 
traditional signature based detection approach is slow and 
time consuming and cannot handle the zero-day attacks. 
Therefore, in this paper, an attempt is made to build a pro-
active Machine Learning based classifier which is trained to 
detect the ransomwares based on the static attributes of the 
PE files.  
Keywords— Ransomware, machine learning, gradient boosting, 
Portable Executable file, classification, cyber security 

I. INTRODUCTION

Manual malware analysis is a multi-staged and a time- 
consuming process. With the ever-expanding threat 
landscape, it becomes difficult to handle the increasing 
volume of threats while keenly adhering to the manual 
malware analysis techniques. Ransomware, as a threat, 
stands out of all other types of malwares because it hijacks 
user’s critical data by encrypting it using the modern 
cryptographic algorithms. Ransomware, has proved to be 
one of the deadly threats because it’s malicious changes 
cannot be undone without paying the ransom to the attacker. 
Therefore, with the advent of several machine learning 
techniques, it becomes obvious and simultaneously 
necessary to utilize the huge repository of data and samples 
to figure out some method to train a machine learning 
model to detect ransomwares quickly. 

It is evident that most of the malwares are authored to 
target the windows platform, where most of the software is 
distributed in the famous Portable Executable [1] (PE) 
format. This is a structured format, therefore, it’s structure 
can be exploited to fetch several attributes which can be 
helpful to train a machine learning model. Several attempts 
[2] have been made to extract various attributes from the PE
file format. The attributes extracted are mostly in the
numerical format or categorical format, which makes the
work of training the classifier easy.

In this attempt of building a machine learning based 
ransomware classifier, we collect a pool of clean samples 
and a pool of ransomware samples from the internet. PE file 
attributes are collected from these samples with the help of 
an attribute extractor [3] script and a dataset is built. This 
dataset is then split into training and test sets. A supervised 
machine learning model is then trained on the training set 
and is evaluated on the test set. 

Nowadays, machine learning has been used widely for 
threat detection. Various models are built using supervised 
learning. Researchers have developed several approaches in 

using machine learning for malware detection may it be by 
training a neural network by feeding [4] it a whole portable 
executable file or as done by researchers at Invensia Labs 
by training a deep neural network for Malware detection 
using two-dimensional binary program features [5]. The 
rapid use of machine learning techniques in malware 
detection and the rampant problem of ransomwares 
motivates to work upon building a classifier which is 
specifically trained to identify ransomwares. 

There could be several approaches to build a classifier to 
detect ransomwares. This work restricts itself at building a 
machine learning based classifier which is trained upon 
static attributes of portable executable files.  

II. CHALLENGES IN MANUAL ANALYSIS AND SIGNATURE 

BASED TRADITIONAL APPROACH 

Several challenges are involved in manually analysing 
the samples. Some of them are as follows -  

A. The Volume of emerging threats

With the ever-increasing threat space, it becomes
difficult to handle the volume at which new threats are 
created and distributed. Not just new threats, but malware 
authors also release the threats into different variants, who 
show similar traits but have slight differences. With the 
increasing volume of malwares, there are several new 
ransomwares like Petya, WannCry, TeslaCrypt etc. which 
pose a potent threat to the user’s critical data. 

B. The Time required to manually analyse a sample

It requires a lot of manual effort and time to analyse a
sample and classify it as a specific kind of threat. Time 
delay in the case of ransomware processing implies that all 
the infected users would lose their valuable data. 

C. Zero Day Attacks

Manual Analysis generally entails a detection based on
signature. Therefore, initially, some people always get 
infected and suffer from a new threat, until the threat is 
manually analysed and an anti-virus signature is available 
through a definition update. Therefore, a traditional 
signature based detection is ineffective against zero-day 
attacks. Therefore, users who face the ransomware attacks 
from new threats have no protection from signature based 
technologies. 

D. Signature Evasions

The antivirus signatures are written for specific threats or
families of threats. Therefore, it becomes easy for the 
malware author to perform trivial tweaks in his malicious 
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code and redistribute the malware until a new signature 
against the new version of the malware is released. 
Therefore, traditional anti-virus signatures can be easily 
evaded. Such evasions in the case of ransomwares would be 
severely detrimental for the end-users and their critical data. 

 
Therefore, a machine learning model trained to detect 

ransomwares would be very useful for protecting the user’s 
data from encryption. 

III.  PROPOSED SYSTEM 

To utilize the information from the static attributes of a 
large pool of portable executable files, a machine learning 
classifier is to be trained.  

Firstly, an attribute extractor [3] script will extract various 
numerical values from the executable files for the 
corresponding attributes. These values would be then fed as 
an input to a trained classifier which will predict if the 
given sample is a ransomware or a non-ransomware. 

 

 
Fig. 1 The workflow for Ransomware Classifier. 

The workflow diagram in Fig. 1 adumbrates the overall 
workflow from extracting the static attributes from samples 
of portable executable files to their classification. 

IV. METHODOLOGY 

There are several steps in building the model which are 
enlisted as follows.  

A. Data Collection and Attribute Extraction 

Firstly, samples were collected form the various sources 
[6] [7] on the internet in the executable format. The samples 
that were used for training the model were taken from two 
different classes. The first class contained non-ransomware 
samples and the second class contained several families of 
ransomwares. These samples were first maintained in two 
different folders ‘/ransomware’ and ‘/non-ransomware’. 
With the help of open-source attribute extractor codes [3] 

available on the git-hub, static attributes were computed on 
these samples whose values were recorded in the csv file.  

B. Making the data ready for machine learning 

In this step, all the rows having NANs were removed. A 
pairwise Euclidean distance was found among all the rows 
in the dataset. One of the rows among every pair whose 
Euclidean distance lied below 0.00005 were removed from 
the dataset. This threshold was decided by manually 
checking the rows with a very less Euclidean distance and 
by understanding that there was a very little change in the 
values of those rows. At the same time all the exact 
duplicates were also removed from the dataset, thus 
maintain all the unique rows.  

The dataset was then split into train and test sets. The 
data set was scaled to expediate the process of training the 
model. Finally, the samples from the ‘ransomware’ family 
were labelled as ‘1’ and the samples from the ‘non-
ransomware’ family were labelled as ‘0’ 

C. Feature selection and Ranking 

The attribute extractors extracted 205 different attributes 
from the samples. Therefore, to reduce the dimensionality 
of the dataset and to study which attributes contribute 
strongly towards predictions feature selection process was 
done using some techniques enlisted below.  
a) At first, Karl Pearson’s correlation coefficient was 

found out among all the possible pairs of attributes. 
Around 20 pairs of highly positively corelated 
attributes were found among which 10 attributes were 
eliminated. 

b) Attributes with very low or zero variance attributes 
were also found in the dataset. Seven of such attributes 
were removed as they had no information for 
predicting ransomwares. 

c) Feature Selection Using Recursive Feature Elimination 
– In this technique, several random forests were built 
using the training set, each time selecting a different 
subset of the 188 remaining features. The set of 
attributes corresponding to the forest with highest 
accuracy were considered the most informative 
attributes. With this technique it was found that out of 
188 features, 135 features were helpful in predicting 
the outcome. These 135 features had a good variance 
and were not corelated with each other conforming that 
they had some unique information. 

d) Feature Selection using XGBoost [9] Algorithm –  
A simple model was built on the train set using the 

XGBoost [9] algorithm. This is one of the most 
sophisticated algorithms in machine learning and has a 
feature of attribute ranking. According to this algorithm 
139 attributes were most informative in predicting 
ransomwares. All the 135 important attributes figured 
out by Recursive Feature Elimination were present in 
the 139 attributes suggested by XGBoost [9] feature 
ranking algorithm. 

 
Finally, the 139 features suggested by the XGBoost 

model were finalized for training the machine learning 
model. 
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D. Model Selection and Building 

Three tree based models namely: CART (Classification 
and Regression Trees), Random Forests [11] and XGBoost. [9] 
were tried. But as XGBoost [9] outperformed the other two, 
it was selected for the classification task. XGBoost [9] is an 
ensemble based algorithm which has been helping a lot of 
data scientists to win Kaggle competitions. It is an 
extremely fast algorithm and supports parallel building of 
the forest. It works on the principle of Gradient Boosting. 

At first a basic XGBoost [9] forest with its default 
parameters was built on the training set. It gave an accuracy 
of 83% with a False Positive rate of 4%. After building this 
preliminary model, parameter tuning [10] was done in order 
properly utilize different features of the model. In the 
process of parameter tuning [10] around 10 different 
parameters, viz. the learning rate, max depth etc. were tuned. 

V. RESULTS 

 
Fig. 2 The graph above depicts the ROC curve for the completely tuned 

final XGBoost Model. 

Fig. 1 shows Receiver Operating Characteristic curve for 
the final model of the classifier. It is evident from the curve 
that a 0.3% False Positive rate is achieved. Some other 
results on the test set with a completely tuned XGBoost [9] 
model are as follows. 
a. Test set size – 19,901 rows with 139 attributes as 

columns. 
b. Final Model Accuracy – 89.80% 
c. Final Model False Positive Rate – 0.3% 
d. Final Model True Positive Rate – 88.08% 

VI.    FUTURE SCOPE 

This is a small ensemble based classifier powered by a 
powerful algorithm like XGBoost [9]. But, with the advent 
of deep learning it was tempting to use neural networks for 
the above classification problem. Due to lack of 
computational resources this work had to be kept limited to 
the use of ensemble technique, whose results are good. But, 
there seems to be a scope of improvement for using more 
convolute models like neural networks to get yet more 
promising results. 

The limited size of data set was also a big hurdle in 
training the classifier. Therefore, it would be highly 
interesting to witness the results obtained by training the 
classifier on a bigger dataset. Due to limited availability of 
ransomware samples, the dataset was skewed therefore 

techniques to handle skewed dataset have been left to the 
future scope. 

VII. CONCLUSIONS 

A machine learning based classifier trained for 
classifying ransomwares would be of a great use for cyber 
security organizations. This would cut-short a lot of time 
needed to analyze samples manually. This classifier would 
also help in proactively detecting the threats that have never 
been seen before thus mitigating zero-day attacks. 

Malware authors and anti-malware experts being always 
in a cat and a mouse game, there could be techniques [12] to 
evade machine learning models too, as shown by the 
researchers at Endgame. But as every technology has its 
own limitations, overall, the ransomware classifier can be 
very helpful in coping with a notorious threat as 
ransomware. 
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